

Welcome to Cppy’s documentation!

Cppy is a small C++ header library which makes it easier to write Python
extension modules. The primary feature is a PyObject smart pointer which
automatically handles reference counting and provides convenience methods for
performing common object operations.

	Installation and use with setuptools
	Using Cppy in an extensions

	Use with setuptools

	Cppy smart pointer
	CPython reference counting crash course

	Cppy smart pointer class

	cppy::ptr methods

	Error reporting
	Functions

Installation and use with setuptools

Since Cppy is nothing else than a collection of header that are only compiled
when used, installing it is extremely straightforward using pip:

$ pip install cppy

If you want to run the development version, you can install directly from
GitHub:

$ pip install git+https://github.com/nucleic/cppy

Using Cppy in an extensions

To use Cppy in your extension (written in C++), you simply need to include it.

#include <cppy/cppy.h>

Cppy includes Python.h so when including cppy.h you do not need to also include
Python.h.

Every functions, classes exposed by Cppy are stored in the cppy namespace.

cppy::ptr obj_ptr(PyUnicode_FromString("test"))

Use with setuptools

Cppy is only needed during the installation step of the projects using it.

When using a PEP 517 compatible build system, one can simply specify cppy as a
build requirement in `pyproject.toml:

[build-system]
requires = ["setuptools>=42", "wheel", "cppy>=1.2"]

Which will ensure that cppy is available in setup.py allowing to import it at the
top level of the module. This allows in particular to import CppyBuildExt
which enforces the use of C++11 and provide access to the cppy headers. On Windows,
FH4 Exception Handling can be disabled by setting the CPPY_DISABLE_FH4 environment
variable. This avoids requiring VCRUNTIME140_1.dll

In one is not using a PEP 517 compatible install, the following example setup.py
script illustrates how to use Cppy without requiring it to be installed before
setup.py is run.

from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext

ext_modules = [
 Extension(
 'project',
 ['module.cpp'],
 include_dirs=['.'],
 language='c++',
),
]

class BuildExt(build_ext):

 def build_extensions(self):

 # Delayed import of cppy to let setup_requires install it if
 # necessary
 import cppy

 ct = self.compiler.compiler_type
 for ext in self.extensions:
 # cppy.get_include() collect the path of the header files
 ext.include_dirs.insert(0, cppy.get_include())
 build_ext.build_extensions(self)

setup(
 name='project',
 python_requires='>=3.5',
 setup_requires=['cppy'],
 ext_modules=ext_modules,
 cmdclass={'build_ext': BuildExt},
)

Cppy smart pointer

CPython relies on reference counting to manage object lifetime. A large pitfall
when writing C-extension is to properly handle increfing and decrefing the
reference count. Cppy aims at simplifying this process by providing a smart
pointer class. Before diving into the details of it helps lets start a CPython
reference counting crash-course.

CPython reference counting crash course

Each object allocated by Python has a reference count, indicating how many
times this object is ‘used’. When the reference count of an object goes to
zero, it is de-allocated. Outside of C extension, one does not need to manage
the reference count manually.

When a function part of Python C-API returns a Python object, it returns a
pointer to it. At the time at which the function returns, the referenced
object is live and its reference count is above zero. Depending of the
function, you do not have the same responsibility with respect to that object
reference count:

	Owned references:
Most functions return a new reference which means that you are responsible
for decrefing the object reference count when you are done with it (basically
the function increfed the object reference count before returning).
In this situation you own a reference.

	Borrowed reference:
Some functions (PyList_GetItem, PyTuple_GetItem, PyDict_GetItem, …)
do not incref the object count before returning. In that case, you have only
a borrowed reference, you are not responsible for decrefing the object
reference count.

Borrowed references allow to avoid the cost of increfing/decrefing which is
nice. However since you do not own the reference, if the object referenced is
removed from its owner (list, tuple for the above two mentioned functions) it
may just disappear and your reference becomes invalid. This can cause issues.
If the object should outlive the container, or the time it will spend in the
container you have to incref it manually. Lets now discuss the convention when
calling a function.

When calling a function, the caller is expected to own a reference to each of
the arguments passed to the callee. The callee does not own the references, it
only borrows them. As a consequence, it should not decref the reference and if
it needs to store the object, in for example a C structure, it should incref
it. Note that this does not apply in general to Python container since those
are manipulated using functions that take care of it. There are however some
exceptions that steals a reference, meaning that you are not the owner of the
reference after the call. PyList_SetItem, for example, steal references.

An easy way to get reference count wrong is forgetting to decref some
intermediate object before leaving a function. This is particularly true if the
function has some early exit point because an exception should be raised. A
good practice is to have a single exit point, however it is not always
possible/practical and even like this it is possible to miss references, this
is typically where cppy can help.

This is a very brief introduction to reference counting. You can read a bit
more in the official Python documentation [https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts] and in the Python API [https://docs.python.org/3/c-api/refcounting.html]
documentation.

Cppy smart pointer class

Cppy smart pointer (cppy::ptr) can be initialized with a pointer to a Python
object as follows:

cppy::ptr obj_ptr(PyUnicode_FromString("test"))

When created, the class assume that you own the reference, if it is not the
case you should incref it first:

PyObject* function(PyObject* obj)
{
 cppy::ptr obj_ptr(cppy::incref(obj));
 cppy::ptr obj_ptr2(obj, true);
}

Note

Cppy provides convenient inline function for common reference manipulation:
- cppy::incref, cppy::xincref, cppy::decref, cppy::xdecref use the
the similarly named Python macros and return the input value.
- cppy::clear, cppy::replace are similar but return void.

You can also initialize a cppy::ptr from another cppy::ptr in which case
the reference count will always be incremented.

The main advantage provided by cppy::ptr is that it implements a destructor
that will be invoked automatically by the c++ runtime when the cppy::ptr
goes out of scope. The destructor will decref the reference for you. As a
consequence you can be sure that your reference you always be decremented when
you leave the function.

Sometimes, however, that is not what you want, because you want to return the
reference the cppy::ptr manage. You can request the cppy::ptr to give back
the reference using its release method. Lets illustrate on a tiny example:

PyObject* function(PyObject* obj)
{
 cppy::ptr repr_ptr(PyObject_Repr(obj));
 return repr_ptr.release();
}

Function which are part of Python C-API are not aware of of cppy::ptr and
when calling them you need to provide the original PyObject*. To access, you
simply need to call the get method of the cppy::ptr object.

PyObject* function(PyObject* obj)
{
 cppy::ptr l_ptr(PyList_New());
 if(PyList_Append(l_ptr.get(), obj) != 0)
 return 0;
 return l_ptr.release();
}

Here we see that because we use cppy::ptr to manage the list, we do not have
to worry about decrefing the reference if an exception occurs, the runtime
will do it for us. If no exception occurs, we stop managing the reference and
we are good.

Using cppy does not eliminate all the pitfalls of writing C-extensions. For
example if you release too early (for example when passing the object to a
function that may fail), you can still leak references. However it does
alleviate some of the complexity.

cppy::ptr methods

All methods that takes a PyObject* can also accept a cppy::ptr.
Most names should be self-explanatory, and apart from the is_ methods most of
them rely on the PyObject_ functions similarly named:

bool is_none() const
bool is_true() const
bool is_false() const
bool is_bool() const
bool is_int() const
bool is_float() const
bool is_list() const
bool is_dict() const
bool is_set() const
bool is_bytes() const
bool is_str() const
bool is_unicode() const
bool is_callable() const
bool is_iter() const
bool is_type(PyTypeObject* cls) const
int is_truthy() const
int is_instance(PyObject* cls) const
int is_subclass(PyObject* cls) const
PyObject* iter() const
PyObject* next() const
PyObject* repr() const
PyObject* str() const
PyObject* bytes() const
PyObject* unicode() const
Py_ssize_t length() const
PyTypeObject* type() const
int richcmp(PyObject* other, int opid) const
long hash() const
bool hasattr(PyObject* attr) const
bool hasattr(const char* attr) const
bool hasattr(const std::string& attr) const
PyObject* getattr(PyObject* attr) const
PyObject* getattr(const char* attr) const
PyObject* getattr(const std::string& attr) const
bool setattr(PyObject* attr, PyObject* value) const
bool setattr(const char* attr, PyObject* value) const
bool setattr(const std::string& attr, PyObject* value) const
bool delattr(PyObject* attr) const
bool delattr(const char* attr) const
bool delattr(const std::string& attr) const
PyObject* getitem(PyObject* key) const
bool setitem(PyObject* key, PyObject* value) const
bool delitem(PyObject* key)
PyObject* call(PyObject* args, PyObject* kwargs = 0) const

Error reporting

In addition to cppy::ptr, cppy provides a set of convenience functions for
reporting errors which all return a NULL pointer allowing them to be used as
follows:

PyObject* function(PyObject* obj)
{
 cppy::ptr obj_ptr(cppy::incref(obj));
 if(!obj_ptr.is_bool())
 return type_error(obj_ptr.get(), "bool");
 return obj_ptr.get();
}

Functions

Functions taking two arguments provide sensible pre-formatted error messages.

inline PyObject* system_error(const char* message)

inline PyObject* type_error(const char* message)

inline PyObject* type_error(PyObject* ob, const char* expected)

inline PyObject* value_error(const char* message)

inline PyObject* runtime_error(const char* message)

inline PyObject* attribute_error(const char* message)

inline PyObject* attribute_error(PyObject* ob, const char* attr)

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Cppy’s documentation!

 		
 Installation and use with setuptools

 		
 Using Cppy in an extensions

 		
 Use with setuptools

 		
 Cppy smart pointer

 		
 CPython reference counting crash course

 		
 Cppy smart pointer class

 		
 cppy::ptr methods

 		
 Error reporting

 		
 Functions

_static/file.png

_static/minus.png

_static/plus.png

